Por que Cientistas de Dados escolhem Python?

A Ciência de Dados é algo que está em evidência hoje no mundo digital. Compondo um ranking das Top 10 profissões do futuro, a profissão de cientista de dados requer que o profissional tenha um conjunto de habilidades e conhecimentos para poder executar bem suas tarefas. Mas, por que a maioria dos cientistas de dados escolhem a linguagem PYTHON?

Python é uma linguagem de programação que foi concebida no final de 1980 e sua implementação foi iniciada em Dezembro de 1989 por Guido van Rossum no CWI na Holanda, como um sucessor para a linguagem de programação ABC capaz de manipulação de exceção e interface com o sistema operacional Amoeba . Van Rossum é o principal autor da linguagem Python e continua como líder nas decisões que envolvem o futuro da linguagem.

Recentemente o blog Ciência e Dados publicou matéria a respeito elencando os porquês dessa escolha por parte dos profissionais e futuros profissionais da área.

Por que os Cientistas de Dados preferem codificação em Python?

Perceba que este pode ser um tema polêmico. Outras linguagens de programação podem ser usadas para o mesmo fim e fatores muitas vezes pessoais estarão envolvidos nesta escolha. Mas aqui seguem algumas razões porque usar Python.

Grande comunidade – com Python, você pode encontrar uma grande (e crescente) Comunidade. No final do dia, se você se perder, pode contar com uma grande comunidade de especialistas para ajudá-lo a encontrar uma solução adequada para a codificação (mesmo em nichos específicos) além de respostas a perguntas relacionadas com a Ciência de Dados e Análise de Dados.

Crescente número de bibliotecas de análise de dados – Com Python, você pode encontrar uma grande variedade bibliotecas de Ciência de dados (como por exemplo: NumPy, SciPy, StatsModels, scikit-learn, pandas, etc.), que estão em crescimento exponencial. Restrições (em métodos de otimização / funções) que estavam faltando um ano atrás já não são um problema e você pode encontrar uma solução robusta adequada, que funciona de forma confiável.

Juypyter-Notebook – esta é simplesmente uma grande ferramenta. Você pode executar múltiplas linhas / blocos de código em diferentes células, você pode brincar com os dados, movê-los para cima ou para baixo e você ainda pode obter seus resultados logo abaixo da célula. É realmente como um organizador mágico que Cientistas de Dados (e as pessoas que executam código) sempre sonharam. Você também pode escrever em R, SQL, Scala, e outras linguagens com Jupyter-Notebook o que faz com que o fluxo de trabalho seja muito mais fácil e eficiente.

Leia na íntegra do blog Ciência e Dados (clicando aqui)

O Futuro do Trabalho em 3 conceitos: Dados, Descentralização e Automação

Não sou eu quem estou falando, mas os fatos estão a mostra. A DSA (DataScience Academy) lançou essa semana em seu blog um artigo que trata sobre os 3 principais conceitos do “Trabalho do Futuro”. Os 3 pilares são os já citados no título da postagem: Dados, Descentralização e Automação que, segundo a DSA ” mudarão radicalmente liderança, cultura, privacidade e segurança. Vamos discutir cada um desses conceitos”.

Você DISCORDA?

O Big Data já existe há algum tempo. Muitas vezes, o termo foi cunhado como a próxima “revolução da administração”, a Quarta Revolução Industrial ou “a próxima fronteira para inovação, competição e produtividade”. Embora apenas alguns anos atrás, as organizações ainda lutassem para entender o impacto dessas tendências em seus negócios, o Big Data agora emergiu como o padrão corporativo.

Data Science Academy, 2019

O Futuro do Trabalho é Descentralizado

Termos como Blockchain, Big Data, Machine Learning, Bots e afins estão e estarão cada dia mais em evidência. Será impossível dissociar nossa sociedade cada vez mais conectada de termos e metodologias assim. O profissional do futuro deverá ser familiarizado com isso tudo e muito mais que virá.

Todos nós, do funcionário público ao vendedor de loja, do professor ao cientista, teremos que ser EMPREENDEDORES DE NÓS MESMOS. “Com o futuro do trabalho, os contratos inteligentes removerão cada vez mais a necessidade de julgamento humano e minimizarão a necessidade de confiança. ” [DSA, 2019]

Resumindo

O futuro do trabalho gira em torno de dados, descentralização e automação. A coleta de dados pode ajudar todos os aspectos da sua empresa, desde o desenvolvimento de novos produtos até a melhoria da eficiência operacional. Os dados levam ao conhecimento que, em última análise, impulsiona a tomada de decisão. Como tal, a organização do amanhã é uma empresa de dados.

Quer saber mais sobre DADOS? Acompanhe a série #PensandoEmDados aqui no blog

Leia a postagem na íntegra no Blog DSA

Python, R e Scala: as linguagens da ciência de dados

O Cientista de Dados Igor Bobriakov escreveu um excelente post (em inglês) sobre as principais bibliotecas para Data Science em linguagens Python, R e Scala. Confira a tradução em português

O Cientista de Dados Igor Bobriakov escreveu um excelente post (em inglês) sobre as principais bibliotecas para Data Science em linguagens Python, R e Scala, com um infográfico bastante didático. Neste post você encontra esse excelente trabalho traduzido na íntegra para o português pelo site Ciência e dados. Boa leitura!

Data Science é um campo promissor e empolgante, desenvolvendo-se rapidamente. Os casos de uso e aplicações da Ciência de Dados estão em constante expansão e o kit de ferramentas para implementar esses aplicativos cresce na mesma proporção.

Cada uma dessas linguagens é adequada para um tipo específico de tarefas, além de cada desenvolvedor escolher a ferramenta mais conveniente para si. Muitas vezes, a escolha de uma linguagem de programação é subjetiva, mas, abaixo, tentaremos saudar as forças de cada uma das três linguagens descritas.

Linguagem R

Projetada principalmente para computação estatística, a linguagem R oferece um excelente conjunto de pacotes de alta qualidade para coleta e visualização de dados estatísticos. Outro ponto forte para a Linguagem R é o conjunto de ferramentas bem desenvolvidas para pesquisa reproduzível. No entanto, R pode ser de alguma forma específico e não é tão bom quando se trata de engenharia e alguns dos casos de programação de propósito geral.

Linguagem Python

Python é uma linguagem de propósito geral com um rico conjunto de bibliotecas para uma ampla gama de propósitos. É tão boa para problemas de matemática, engenharia e Deep Learning quanto para manipulação de dados e visualizações. Esta linguagem é uma excelente escolha para especialistas iniciantes e avançados, o que a torna extremamente popular entre os Cientistas de Dados.

Linguagem Scala

Scala é uma solução ideal para trabalhar com Big Data. A combinação Scala e Apache Spark oferece a oportunidade de aproveitar ao máximo a computação distribuída em cluster de computadores. Portanto, a linguagem possui muitas ótimas bibliotecas para aprendizado de máquina e engenharia; no entanto, falta possibilidades de análise e visualização de dados em comparação com as linguagens anteriores. Se você não estiver trabalhando com Big Data, o Python e R podem mostrar um desempenho melhor que Scala. Mas se estiver trabalhando com Big Data, Scala pode ser a melhor opção.

Continue Lendo “Python, R e Scala: as linguagens da ciência de dados”